Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.21437/inter...
Article . 2023 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2023
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

TranUSR: Phoneme-to-word Transcoder Based Unified Speech Representation Learning for Cross-lingual Speech Recognition

Authors: Xue, Hongfei; Shao, Qijie; Chen, Peikun; Guo, Pengcheng; Xie, Lei; Liu, Jie;

TranUSR: Phoneme-to-word Transcoder Based Unified Speech Representation Learning for Cross-lingual Speech Recognition

Abstract

UniSpeech has achieved superior performance in cross-lingual automatic speech recognition (ASR) by explicitly aligning latent representations to phoneme units using multi-task self-supervised learning. While the learned representations transfer well from high-resource to low-resource languages, predicting words directly from these phonetic representations in downstream ASR is challenging. In this paper, we propose TranUSR, a two-stage model comprising a pre-trained UniData2vec and a phoneme-to-word Transcoder. Different from UniSpeech, UniData2vec replaces the quantized discrete representations with continuous and contextual representations from a teacher model for phonetically-aware pre-training. Then, Transcoder learns to translate phonemes to words with the aid of extra texts, enabling direct word generation. Experiments on Common Voice show that UniData2vec reduces PER by 5.3% compared to UniSpeech, while Transcoder yields a 14.4% WER reduction compared to grapheme fine-tuning.

5 pages, 3 figures. Accepted by INTERSPEECH 2023

Keywords

Audio and Speech Processing (eess.AS), FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Audio and Speech Processing

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green