
The success of sparse representations in image modeling and recovery has motivated its use in computer vision applications. Image retrieval and classification tasks require extracting features that discriminate different image classes. State-of-the-art object recognition methods based on sparse coding use spatial pyramid features obtained from dense descriptors. In this paper, we develop a feature extraction method that uses multiple global/local features extracted from large overlapping regions of an image, which we refer to as sub-images. We propose a procedure for dictionary design and supervised local sparse coding of sub-image heterogeneous features. We perform image retrieval on the Microsoft Research Cambridge image dataset and show that the proposed features outperform the spatial pyramid features obtained using dense descriptors.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
