Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Boletín de la Sociedad Matemática Mexicana
Article . 2025 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ladder operators for generalized Zernike or disk polynomials

Authors: Misael E. Marriaga;

Ladder operators for generalized Zernike or disk polynomials

Abstract

The aim of this work is to report on several ladder operators for generalized Zernike polynomials which are orthogonal polynomials on the unit disk $\mathbf{D}\,=\,\{(x,y)\in \mathbb{R}^2: \; x^2+y^2\leqslant 1\}$ with respect to the weight function $W_μ(x,y)\,=\,(1-x^2-y^2)^μ$ where $μ>-1$. These polynomials can be expressed in terms of the univariate Jacobi polynomials and, thus, we start by deducing several ladder operators for the Jacobi polynomials. Due to the symmetry of the disk and the weight function $W_μ$, it turns out that it is more convenient to use complex variables $z\,=\, x+iy$ and $\bar{z}\,=\,x-iy$. Indeed, this allows us to systematically use the univariate ladder operators to deduce analogous ones for the complex generalized Zernike polynomials. Some of these univariate and bivariate ladder operators already appear in the literature. However, to the best of our knowledge, the proofs presented here are new. Lastly, we illustrate the use of ladder operators in the study of the orthogonal structure of some Sobolev spaces.

Keywords

Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.), disk polynomials, ladder operators, Orthogonal polynomials, Mathematics - Classical Analysis and ODEs, Ladder operators, Orthogonal polynomials and functions in several variables expressible in terms of special functions in one variable, Classical Analysis and ODEs (math.CA), FOS: Mathematics, Disk polynomials, Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis, orthogonal polynomials, 42C05, 33C50, 33C45

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green