
Dynamic programming on various graph decompositions is one of the most fundamental techniques used in parameterized complexity. Unfortunately, even if we consider concepts as simple as path or tree decompositions, such dynamic programming uses space that is exponential in the decomposition’s width, and there are good reasons to believe that this is necessary. However, it has been shown that in graphs of low treedepth it is possible to design algorithms that achieve polynomial space complexity without requiring worse time complexity than their counterparts working on tree decompositions of bounded width. Here, treedepth is a graph parameter that, intuitively speaking, takes into account both the depth and the width of a tree decomposition of the graph, rather than the width alone. Motivated by the above, we consider graphs that admit clique expressions with bounded depth and label count, or equivalently, graphs of low shrubdepth. Here, shrubdepth is a bounded-depth analogue of cliquewidth, in the same way as treedepth is a bounded-depth analogue of treewidth. We show that also in this setting, bounding the depth of the decomposition is a deciding factor for improving the space complexity. More precisely, we prove that on n -vertex graphs equipped with a tree-model (a decomposition notion underlying shrubdepth) of depth d and using k labels, • Independent Set and Dominating Set can be solved in time \(2^{\mathcal {O}(dk)}\cdot n^{\mathcal {O}(1)} \) using \(\mathcal {O}(dk\log n) \) space; • Max Cut can be solved in time \(n^{\mathcal {O}(dk)} \) using \(\mathcal {O}(dk\log n) \) space. We also establish a lower bound, conditional on a certain assumption about the complexity of Longest Common Subsequence , which shows that at least in the case of Independent Set the exponent of the parametric factor in the time complexity has to grow with d if one wishes to keep the space complexity polynomial..
FOS: Computer and information sciences, [INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM], Parameterized complexity, algebraic methods, shrubdepth, Data Structures and Algorithms, Theory of computation → Parameterized complexity and exact algorithms, [INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS], Data Structures and Algorithms (cs.DS), space complexity, 004, ddc: ddc:004
FOS: Computer and information sciences, [INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM], Parameterized complexity, algebraic methods, shrubdepth, Data Structures and Algorithms, Theory of computation → Parameterized complexity and exact algorithms, [INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS], Data Structures and Algorithms (cs.DS), space complexity, 004, ddc: ddc:004
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
