
System biology problems such as whole-genome network construction from large-scale gene expression data are sophisticated and time-consuming. Therefore, using sequential algorithms are not feasible to obtain a solution in an acceptable amount of time. Today, by using massively parallel computing, it is possible to infer large-scale gene regulatory networks. Recently, establishing gene regulatory networks from large-scale datasets have drawn the noticeable attention of researchers in the field of parallel computing and system biology. In this paper, we attempt to provide a more detailed overview of the recent parallel algorithms for constructing gene regulatory networks. Firstly, fundamentals of gene regulatory networks inference and large-scale datasets challenges are given. Secondly, a detailed description of the four parallel frameworks and libraries including CUDA, OpenMP, MPI, and Hadoop is discussed. Thirdly, parallel algorithms are reviewed. Finally, some conclusions and guidelines for parallel reverse engineering are described.
Article
Article
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
