
To estimate the reliability and cognitive states of operator performance in a human-machine collaborative environment, we propose a novel human mental workload (MW) recognizer based on deep learning principles and utilizing the features of the electroencephalogram (EEG). To determine personalized properties in high dimensional EEG indicators, we introduce a feature mapping layer in stacked denoising autoencoder (SDAE) that is capable of preserving the local information in EEG dynamics. The ensemble classifier is then built via the subject-specific integrated deep learning committee, and adapts to the cognitive properties of a specific human operator and alleviates inter-subject feature variations. We validate our algorithms and the ensemble SDAE classifier with local information preservation (denoted by EL-SDAE) on an EEG database collected during the execution of complex human-machine tasks. The classification performance indicates that the EL-SDAE outperforms several classical MW estimators when its optimal network architecture has been identified.
Human machine systems, Databases, Factual, Stacked denoising autoencoders, Models, Neurological, Deep learning, Electroencephalography, Mental workloads, Cognition, Deep Learning, Humans, Electroencephalograms
Human machine systems, Databases, Factual, Stacked denoising autoencoders, Models, Neurological, Deep learning, Electroencephalography, Mental workloads, Cognition, Deep Learning, Humans, Electroencephalograms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 60 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
