Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Pattern Recognitionarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Pattern Recognition
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Clustering of cell populations in flow cytometry data using a combination of Gaussian mixtures

Authors: Michael Reiter; Paolo Rota; Florian Kleber; Markus Diem; Stefanie Groeneveld-Krentz; Michael Dworzak;

Clustering of cell populations in flow cytometry data using a combination of Gaussian mixtures

Abstract

We propose a supervised learning approach to automatic quantification of cell populations in flow cytometric samples. One sample contains up to millions of measurement vectors with a dimensionality between 10 and 20. Normally, each measurement vector corresponds to a single cell in the biological sample. Identifying biologically meaningful cell populations is essentially a clustering problem, however, standard clustering methods are impractical, because size, shape and location of corresponding clusters may vary strongly between samples mainly due to phenotypic differences and inter-laboratory variations. In our holistic approach, we implicitly employ the structural information (such as relative locations and shape of sub-populations). A new input sample is reconstructed by a linear combination of artificial reference samples each represented by a Gaussian Mixture Model (GMM), in which for each Gaussian component the class label of the corresponding cluster of observations is known. The reference samples are calculated from a larger set of training samples by non-negative matrix factorization and can be regarded as the basis of a lower dimensional feature space, in which input samples are reconstructed. We show a method for calculating the feature space transformation based on minimization the L2 distance defined between two GMM. The feature space representation of the sample is then used to assign each observation to one of the specified sub-populations by a Bayes decision. We present classification results on a database of about 170 patients with Acute Lymphoblastic Leukemia (ALL), where high accuracy in the prediction of relatively small leukemic populations is crucial. The approach is not limited to our application. It can be employed wherever analysis of large, multi-dimensional, numerical data of a specific class of samples with related structure has to be performed. HighlightsA density model based on the interpolation of Gaussian mixture models is presented.Non-negative matrix factorization is used to compress the model.Affine registration of Gaussian mixture models using the L2 distance is performed.The applicability of the method is demonstrated on flow cytometry data.

Keywords

Acute lymphblastic leukemia; Clustering; Convex non-negative matrix factorization; Flow cytometry; Gaussian mixture model; L2 distance

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Top 10%
Top 10%
Related to Research communities
Cancer Research
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!