Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Environmental Management
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Wastewater recycling in Antarctica: Performance assessment of an advanced water treatment plant in removing trace organic chemicals

Authors: Allinson, Mayumi; Kadokami, K; Shiraishi, F; Nakajima, D; Zhang, Jianhua; Knight, A; Gray, Stephen; +2 Authors

Wastewater recycling in Antarctica: Performance assessment of an advanced water treatment plant in removing trace organic chemicals

Abstract

The Australian Antarctic Division (AAD) operates Australia's Davis Station in the Antarctic. In 2005, Davis Station's wastewater treatment plant failed and since then untreated, macerated effluent has been discharged to the ocean. The objectives of this study were to determine whether an advanced water treatment plant (AWTP) commissioned by the AAD and featuring a multi-barrier process involving ozonation, ceramic microfiltration, biologically activated carbon filtration, reverse osmosis, ultraviolet disinfection and chlorination was capable of producing potable water and a non-toxic brine concentrate that can be discharged with minimal environmental impact. The AWTP was tested using water from a municipal wastewater treatment plant in Tasmania, Australia. We used spot water and passive sampling combined with two multi-residue chromatographic-mass spectrometric methods and a range of recombinant receptor-reporter gene bioassays to screen trace organic chemicals (TrOCs), toxicity and receptor activity in the Feed water, in the environmental discharge (reject water), and product water from the AWTP for six months during 2014-15, and then again for three months in 2016. Across the two surveys we unambiguously detected 109 different TrOCs in the feed water, 39 chemicals in the reject water, and 34 chemicals in the product water. Sample toxicity and receptor activity in the feed water samples was almost totally removed in both testing periods, confirming that the vast majority of the receptor active TrOCs were removed by the treatment process. All the NDMA entering the AWTP in the feed and/or produced in the plant (typically < 50 ng/L), was retained into the reject water with no NDMA observed in the product water. In conclusion, the AWTP was working to design, and releases of TrOCs at the concentrations observed in this study would be unlikely cause adverse effects on populations of aquatic organisms in the receiving environment or users of the potable product water.

Keywords

550, 0904 Chemical Engineering, Australia, Antarctic Regions, advanced water treatment plant, AWTP, Wastewater, Waste Disposal, Fluid, Tasmania, Water Purification, wastewater treatment, trace organic chemicals, Recycling, TrOCs, Institute for Sustainability and Innovation (ISI), Organic Chemicals, Water Pollutants, Chemical

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!