Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Pharmac...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Pharmacology
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2025
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Pharmacology
Article . 2025
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Accurate identification of snoRNA targets using variational graph autoencoder to advance the redevelopment of traditional medicines

Authors: Zhina Wang; Zhina Wang; Yangyuan Chen; Hongming Ma; Hongming Ma; Hong Gao; Hong Gao; +4 Authors

Accurate identification of snoRNA targets using variational graph autoencoder to advance the redevelopment of traditional medicines

Abstract

Existing studies indicate that dysregulation or abnormal expression of small nucleolar RNA (snoRNA) is closely associated with various diseases, including lung cancer. Furthermore, these diseases often involve multiple targets, making the redevelopment of traditional medicines highly promising. Accurate prediction of potential snoRNA therapeutic targets is essential for early disease intervention and the redevelopment of traditional medicines. Additionally, researchers have developed artificial intelligence (AI)-based methods to screen and predict potential snoRNA therapeutic targets, thereby advancing traditional drug redevelopment. However, existing methods face challenges such as imbalanced datasets and the dominance of high-degree nodes in graph neural networks (GNNs), which compromise the accuracy of node representations. To address these challenges, we propose an AI model based on variational graph autoencoders (VGAEs) that integrates decoupling and Kolmogorov-Arnold Network (KAN) technologies. The model reconstructs snoRNA-disease graphs by learning snoRNA and disease representations, accurately identifying potential snoRNA therapeutic targets. By decoupling similarity from node degree, the model mitigates the dominance of high-degree nodes, enhances prediction accuracy in scenarios like lung cancer, and leverages KAN technology to improve adaptability and flexibility to new data. Case studies revealed that snoRNA SNORA21 and SNORD33 are abnormally expressed in lung cancer patients and are strong candidates for potential therapeutic targets. These findings validate the proposed model’s effectiveness in identifying therapeutic targets for diseases like lung cancer, supporting early screening and treatment, and advancing the redevelopment of traditional medicines. Data and experimental findings are archived in: https://github.com/shmildsj/data.

Related Organizations
Keywords

Pharmacology, lung cancer, redevelopment of traditional medicines, variational graph autoencoder (VGAE), snoRNA therapeutic targets, Therapeutics. Pharmacology, RM1-950, artificial intelligence (AI)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold
Related to Research communities
Cancer Research