Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://orbilu.uni.l...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://orbilu.uni.lu/bitstrea...
Article
License: CC BY NC SA
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1109/icc.20...
Article . 2016 . Peer-reviewed
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Active interference constraint learning with uncertain feedback for Cognitive Radio Networks

Authors: Anestis Tsakmalis; Symeon Chatzinotas; Björn E. Ottersten;

Active interference constraint learning with uncertain feedback for Cognitive Radio Networks

Abstract

In this paper, an intelligent probing method for interference constraint learning is proposed to allow a centralized Cognitive Radio Network (CRN) to access the frequency band of a Primary User (PU) operating based on an Adaptive Coding and Modulation (ACM) protocol. The main idea is that the CRN probes the PU and subsequently applies a Modulation and Coding Classification (MCC) technique to acquire the Modulation and Coding scheme (MCS) of the PU. This feedback is an implicit channel state information (CSI) of the PU link, indicating how harmful the probing induced interference is. The intelligence of this sequential probing process lies on the selection of the power levels of the Secondary Users (SUs) which aims to minimize the number of probing attempts, a clearly Active Learning (AL) procedure, and consequently the overall PU QoS degradation. The enhancement introduced in this work is that we incorporate the probability of each feedback being correct into this intelligent probing mechanism by using a univariate Bayesian Nonparamet-ric AL method, the Probabilistic Bisection Algorithm (PBA). An adaptation of the PBA is implemented for higher dimensions and its effectiveness as an uncertainty driven AL method is demonstrated through numerical simulations.

Country
Luxembourg
Related Organizations
Keywords

: Electrical & electronics engineering [C06] [Engineering, computing & technology], : Ingénierie électrique & électronique [C06] [Ingénierie, informatique & technologie], Probabilistic Bisection Algorithm, Active Learning, Modulation and Coding Classification

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Green