
arXiv: 2504.10745
Explanations for computer vision models are important tools for interpreting how the underlying models work. However, they are often presented in static formats, which pose challenges for users, including information overload, a gap between semantic and pixel-level information, and limited opportunities for exploration. We investigate interactivity as a mechanism for tackling these issues in three common explanation types: heatmap-based, concept-based, and prototype-based explanations. We conducted a study (N=24), using a bird identification task, involving participants with diverse technical and domain expertise. We found that while interactivity enhances user control, facilitates rapid convergence to relevant information, and allows users to expand their understanding of the model and explanation, it also introduces new challenges. To address these, we provide design recommendations for interactive computer vision explanations, including carefully selected default views, independent input controls, and constrained output spaces.
To appear in Extended Abstracts of the CHI Conference on Human Factors in Computing Systems (CHI EA '25)
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Human-Computer Interaction, Computer Science - Computer Vision and Pattern Recognition, Human-Computer Interaction (cs.HC)
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Human-Computer Interaction, Computer Science - Computer Vision and Pattern Recognition, Human-Computer Interaction (cs.HC)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
