Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DBLP
Conference object
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Spatio-Temporal AutoEncoder for Video Anomaly Detection

Authors: Yiru Zhao; Bing Deng; Chen Shen 0003; Yao Liu 0014; Hongtao Lu 0001; Xian-Sheng Hua 0001;

Spatio-Temporal AutoEncoder for Video Anomaly Detection

Abstract

Anomalous events detection in real-world video scenes is a challenging problem due to the complexity of "anomaly" as well as the cluttered backgrounds, objects and motions in the scenes. Most existing methods use hand-crafted features in local spatial regions to identify anomalies. In this paper, we propose a novel model called Spatio-Temporal AutoEncoder (ST AutoEncoder or STAE), which utilizes deep neural networks to learn video representation automatically and extracts features from both spatial and temporal dimensions by performing 3-dimensional convolutions. In addition to the reconstruction loss used in existing typical autoencoders, we introduce a weight-decreasing prediction loss for generating future frames, which enhances the motion feature learning in videos. Since most anomaly detection datasets are restricted to appearance anomalies or unnatural motion anomalies, we collected a new challenging dataset comprising a set of real-world traffic surveillance videos. Several experiments are performed on both the public benchmarks and our traffic dataset, which show that our proposed method remarkably outperforms the state-of-the-art approaches.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    444
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
444
Top 0.1%
Top 1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!