
pmid: 34096517
pmc: PMC8182801
Typical ranges of thermal expansion coefficients are established for organic molecular crystals in the Cambridge Structural Database. The CSD Python API is used to extract 6201 crystal structures determined close to room temperature and at least one lower temperature down to 90 K. The data set is dominated by structure families with only two temperature points and is subject to various sources of error, including incorrect temperature reporting and missing flags for variable-pressure studies. For structure families comprising four or more temperature points in the range 90–300 K, a linear relationship between unit-cell volume and temperature is shown to be a reasonable approximation. For a selected subset of 210 structures showing an optimal linear fit, the volumetric expansion coefficient at 298 K has mean 173 p.p.m. K−1and standard deviation 47 p.p.m. K−1. The full set of 6201 structures shows a similar distribution, which is fitted by a normal distribution with mean 161 p.p.m. K−1and standard deviation 51 p.p.m. K−1, with excess population in the tails mainly comprising unreliable entries. The distribution of principal expansion coefficients, extracted under the assumption of a linear relationship between length and temperature, shows a positive skew and can be approximated by two half normal distributions centred on 33 p.p.m. K−1with standard deviations 40 p.p.m. K−1(lower side) and 56 p.p.m. K−1(upper side). The distribution for the full structure set is comparable to that of the test subset, and the overall frequency of biaxial and uniaxial negative thermal expansion is estimated to be < 5% and ∼30%, respectively. A measure of the expansion anisotropy shows a positively skewed distribution, similar to the principal expansion coefficients themselves, and ranges based on suggested half normal distributions are shown to highlight literature cases of exceptional thermal expansion.
Python Api, python API, research papers, Thermal Expansion, molecular crystals, Molecular Crystals, Cambridge Structural Database, Research Papers, thermal expansion
Python Api, python API, research papers, Thermal Expansion, molecular crystals, Molecular Crystals, Cambridge Structural Database, Research Papers, thermal expansion
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
