
handle: 11568/813777 , 2318/154516
The stochastic modelling of biological systems, coupled with Monte Carlo simulation of models, is an increasingly popular technique in Bioinformatics. The simulation-analysis workflow may result into a computationally expensive task reducing the interactivity required in the model tuning. In this work, we advocate high-level software design as a vehicle for building efficient and portable parallel simulators for a variety of platforms, ranging from multi-core platforms to GPGPUs to cloud. In particular, the Calculus of Wrapped Compartments (CWC) parallel simulator for systems biology equipped with on-line mining of results, which is designed according to the Fast Flow pattern-based approach, is discussed as a running example. In this work, the CWC simulator is used as a paradigmatic example of a complex C++ application where the quality of results is correlated with both computation and I/O bounds, and where high-quality results might turn into big data. The Fast Flow parallel programming framework, which advocates C++ pattern-based parallel programming makes it possible to develop portable parallel code without relinquish neither run-time efficiency nor performance tuning opportunities. Performance and effectiveness of the approach are validated on a variety of platforms, inter-alia cache-coherent multi-cores, cluster of multi-core (Ethernet and Infiniband) and the Amazon Elastic Compute Cloud.
Fastflow; GPGPU; Bioinformatics, Computer Networks and Communications; Hardware and Architecture; Software
Fastflow; GPGPU; Bioinformatics, Computer Networks and Communications; Hardware and Architecture; Software
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
