Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/icsipa...
Article . 2021 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Robust Segmentation of Malaria Parasites Detection using Fast k-Means and Enhanced k-Means Clustering Algorithms

Authors: Thaqifah Ahmad Aris; Aimi Salihah Abdul Nasir; Zeehaida Mohamed;

A Robust Segmentation of Malaria Parasites Detection using Fast k-Means and Enhanced k-Means Clustering Algorithms

Abstract

Image segmentation is the crucial stage in image analysis since it represents the first step towards extracting important information from the image. In summary, this paper presents several clustering approach to obtain fully malaria parasite cells segmented images of Plasmodium Falciparum and Plasmodium Vivax species on thick smear images. Despite k-means is a renowned clustering approach, its effectiveness is still unreliable due to some vulnerabilities which leads to the need of a better approach. To be specific, fast k-means and enhanced k-means are the adaptation of existing k-means. Fast k-means eliminates the requirement to retraining cluster centres, thus reducing the amount of time it takes to train image cluster centres. While, enhanced k-means introduces the idea of variance and a revised edition of the transferring method for clustered members to aid the distribution of data to the appropriate centre throughout the clustering action. Hence, the goal of this study is to explore the efficacy of k-means, fast k-means and enhanced k-means algorithms in order to achieve a clean segmented image with ability to correctly segment whole region of parasites on thick smear images. Practically, about 100 thick blood smear images were analyzed, and the verdict demonstrate that segmentation via fast k-means clustering algorithm has splendid segmentation performance, with an accuracy of 99.91%, sensitivity of 75.75%, and specificity of 99.93%.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!