Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Data Science and Analytics
Article . 2021 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

CPI-model-based analysis of sparse k-means clustering algorithms

Authors: Kazuo Aoyama; Kazumi Saito; Tetsuo Ikeda;

CPI-model-based analysis of sparse k-means clustering algorithms

Abstract

Standard k-means clustering algorithms have been widely used to solve the partitioning problems of a given data set into k disjoint subsets. When a data set is large-scale and high-dimensional sparse, such as text data with a bag-of-words representation, it is not trivial which representations are adopted for both the data and mean sets. Additionally, algorithms that differ only in their representations need distinct elapsed times until their convergences, despite starting at an identical initial state and executing an identical number of similarity calculations, which is a conventional indicator of speed performance. We design sparse k-means clustering algorithms that utilize distinct representations, each of which is a pair of a data structure and an expression. Our purpose is to clarify the cause of their performance differences and identify the best algorithm when they are executed in a modern computer system. We analyze the algorithms with a simple yet practical clock-cycle per instruction (CPI) model that is expressed as a linear combination of four performance degradation factors in a modern computer system: the completed instructions, the level-1 and last-level cache misses, and the branch mispredictions. We also optimize the model parameters by a newly introduced procedure and demonstrate that CPIs calculated with our model agree well with experimental results when the algorithms are applied to large-scale and high-dimensional real document data sets. Furthermore, our model clarifies that the best algorithm among them suppresses the performance degradation factors of the number of cache misses, the branch mispredictions, and the completed instructions.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!