
Coronary artery disease (CAD) has been one of main causes of heart diseases globally. The electrocardiogram (ECG) is a widely used diagnostic tool to monitor patients' heart activities, and medical personnel need to judge whether there are abnormal heartbeats according to captured results. Therefore, it is significant to identify ECG signals accurately and fast. In this paper, a fast and accurate electrocardiogram (ECG) classification system based on deep learning is proposed. In our model, stacked denoising autoencoders (SDAE), as encoder, automatically learns semantic encoding of heartbeats without any complex feature extraction in unsupervised way. Then bidirectional LSTM (Bi-LSTM) classifier achieves classification of heartbeats with semantic encoding. SDAE implements noise-reduction while Bi-LSTM takes full advantage of temporal information in data. At the same time, this method relieves impacts from unbalanced data by employing cost-sensitive loss function. We validate our model on MIT-BIH Arrhythmias Database, SVDB and NSTDB respectively. Compared with state-of-art methods, the final result verify that this newly proposed method not only has high accuracy but also boosts classifying efficiency.
bidirectional long short-term term network (Bi-LSTM), stacked denoising autoencoder (SDAE), Electrical engineering. Electronics. Nuclear engineering, cost-sensitive learning, denoise, Arrythmia, electrocardiogram (ECG), TK1-9971
bidirectional long short-term term network (Bi-LSTM), stacked denoising autoencoder (SDAE), Electrical engineering. Electronics. Nuclear engineering, cost-sensitive learning, denoise, Arrythmia, electrocardiogram (ECG), TK1-9971
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
