Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1038/s41598...
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2025
License: CC BY NC ND
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doaj.org/article/46486...
Article . 2025
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Few-shot traffic classification based on autoencoder and deep graph convolutional networks

Authors: Shengwei Xu; Jijie Han; Yilong Liu; Haoran Liu; Yijie Bai;

Few-shot traffic classification based on autoencoder and deep graph convolutional networks

Abstract

Traffic classification is a crucial technique in network management that aims to identify and manage data packets to optimize network efficiency, ensure quality of service, enhance network security, and implement policy management. As graph convolutional networks (GCNs) take into account not only the features of the data itself, but also the relationships among sets of data during classification. Many researchers have proposed their own traffic classification methods based on GCN in recent years. However, most of the current approaches use two-layer GCN primarily due to the over-smoothing problem associated with deeper GCN. In scenarios with small samples, a two-layer GCN may not adequately capture relationships among traffic data, leading to limited classification performance. Additionally, during graph construction, traffic usually needs to be trimmed to a uniform length, and for traffic with insufficient length, zero-padding is typically applied to extension. This zero-padding strategy poses significant challenges in traffic classification with small samples. In this paper, we propose a method based on autoencoder (AE) and deep graph convolutional networks (ADGCN) for traffic classification for few-shot datasets. ADGCN first utilizes an AE to reconstruct the traffic. AE enables shorter traffic to learn abstract feature representations from longer traffic of the same class to replace zeros, mitigating the adverse effects of zero-padding. The reconstructed traffic is then classified using GCNII, a deep GCN model that addresses the challenge of insufficient data samples. ADGCN is an end-to-end traffic classification method applicable to various scenarios. According to experimental results, ADGCN can achieve a classification accuracy improvement of 3.5 to 24% compared to existing state-of-the-art methods. The code is available at https://github.com/han20011019/ADGCN .

Related Organizations
Keywords

Few-shot, Traffic classification, Science, Q, R, Medicine, Autoencoder, Graph convolutional networks, Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Green
hybrid