
doi: 10.3390/math13020196
A protein complex can be regarded as a functional module developed by interacting proteins. The protein complex has attracted significant attention in bioinformatics as a critical substance in life activities. Identifying protein complexes in protein–protein interaction (PPI) networks is vital in life sciences and biological activities. Therefore, significant efforts have been made recently in biological experimental methods and computing methods to detect protein complexes accurately. This study proposed a new method for PPI networks to facilitate the processing and development of the following algorithms. Then, a combination of the improved density peaks clustering algorithm (DPC) and the fuzzy C-means clustering algorithm (FCM) was proposed to overcome the shortcomings of the traditional FCM algorithm. In other words, the rationality of results obtained using the FCM algorithm is closely related to the selection of cluster centers. The objective function of the FCM algorithm was redesigned based on ‘high cohesion’ and ‘low coupling’. An adaptive parameter-adjusting algorithm was designed to optimize the parameters of the proposed detection algorithm. This algorithm is denoted as the DFPO algorithm (DPC-FCM Parameter Optimization). Finally, the performance of the DFPO algorithm was evaluated using multiple metrics and compared with over ten state-of-the-art protein complex detection algorithms. Experimental results indicate that the proposed DFPO algorithm exhibits improved detection accuracy compared with other algorithms.
fuzzy clustering algorithm, protein complexes, density peaks clustering algorithm, protein–protein interaction network, QA1-939, parameter optimization, Mathematics, swarm intelligence optimization algorithm
fuzzy clustering algorithm, protein complexes, density peaks clustering algorithm, protein–protein interaction network, QA1-939, parameter optimization, Mathematics, swarm intelligence optimization algorithm
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
