
doi: 10.5755/j02.ms.29871
This study was carried out to introduce newly developed silicone-biocomposite materials, of Curcuma longa-silicone biocomposite; and assess its tensile properties of using the Neo-Hookean hyperelastic constitutive equation. The specimens were prepared from the mix of Curcuma longa fiber and pure silicone at various fiber composition (0 wt.%, 4 wt.%, 8 wt.%, and 12 wt.%). A uniaxial tensile test was carried out by adopting the ASTM D412 testing standard. The Neo-Hookean model was employed to obtain the material constant, C1 value. Results obtained indicate that the incorporation of Curcuma longa fiber improves the stiffness of the silicone biocomposite as can be seen from the increase of the tensile modulus, while marginally decreasing its tensile strength. The material elastic constant, C1 of silicone reinforced with Curcuma longa was then predicted by using Artificial Neural Network (ANN). The regression coefficients obtained by training the neural network are satisfactory, therefore the neural network can be used for predicting the material constant, C1 of the silicone biocomposite. The prediction of ANN generates a better correlation if there are more data set and can be a good fit for predicting the unknown value.
Mining engineering. Metallurgy, TN1-997, hyperelastic, curcuma longa-silicone biocomposite, artificial neural network, neo-hookean model
Mining engineering. Metallurgy, TN1-997, hyperelastic, curcuma longa-silicone biocomposite, artificial neural network, neo-hookean model
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
