Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Magnetic Resonance i...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Magnetic Resonance in Medicine
Article . 2011 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Probing mouse brain microstructure using oscillating gradient diffusion MRI

Authors: Manisha, Aggarwal; Melina V, Jones; Peter A, Calabresi; Susumu, Mori; Jiangyang, Zhang;

Probing mouse brain microstructure using oscillating gradient diffusion MRI

Abstract

AbstractHigh resolution diffusion tensor images of the mouse brain were acquired using the pulsed gradient spin echo sequence and the oscillating gradient spin echo sequence. The oscillating gradient spin echo tensor images demonstrated frequency‐dependent changes in diffusion measurements, including apparent diffusion coefficient and fractional anisotropy, in major brain structures. Maps of the rate of change in apparent diffusion coefficient with oscillating gradient frequency revealed novel tissue contrast in the mouse hippocampus, cerebellum, and cerebral cortex. The observed frequency‐dependent contrasts resembled neuronal soma‐specific Nissl staining and nuclei‐specific 4′,6‐diamidino‐2‐phenylindole (DAPI) staining in the mouse brain, which suggests that the contrasts might be related to key features of cytoarchitecture in the brain. In the mouse cuprizone model, oscillating gradient spin echo‐based diffusion MRI revealed significantly higher frequency‐dependence of perpendicular diffusivity (λ⊥) in the demyelinated caudal corpus callosum at 4 weeks after cuprizone treatment when compared with control mice and mice at 6 weeks after cuprizone treatment. The elevated frequency‐dependence of λ⊥coincided with the infiltration of activated microglia/macrophages and disruption of axons during acute demyelination in the caudal corpus callosum. The results demonstrate the potential of oscillating gradient spin echo‐based diffusion MRI for providing tissue contrasts complimentary to conventional pulsed gradient spin echo‐based diffusion MRI. Magn Reson Med 67:98–109, 2012. © 2011 Wiley Periodicals, Inc.

Keywords

Brain, Reproducibility of Results, Image Enhancement, Sensitivity and Specificity, Mice, Inbred C57BL, Mice, Diffusion Magnetic Resonance Imaging, Oscillometry, Image Interpretation, Computer-Assisted, Animals, Female, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    113
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
113
Top 1%
Top 10%
Top 10%
bronze