Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Signal Processingarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Signal Processing
Article . 2002 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Numerically stable fast convergence least-squares algorithms for multichannel active sound cancellation systems and sound deconvolution systems

Authors: Bouchard, Martin;

Numerically stable fast convergence least-squares algorithms for multichannel active sound cancellation systems and sound deconvolution systems

Abstract

In recent years, recursive least-squares (RLS) algorithms and fast-transversal-filters (FTF) algorithms have been introduced for multichannel active sound cancellation (ASC) systems and multichannel sound deconvolution (MSD) systems. It was reported that these algorithms can greatly improve the convergence speed of the ASC/MSD systems using adaptive FIR filters. However, numerical instability of the algorithms is an issue that needs to be resolved. In this paper, extensions of numerically stable realisations of RLS algorithms such as the inverse QR-RLS, the QR decomposition least-squares-lattice (QRD-LSL) and the symmetry preserving RLS algorithms are introduced for the specific problem of multichannel ASC/MSD. Multichannel versions of some of these algorithms have previously been published for prediction or identification systems, but not for control systems. The case of underdetermined ASC/MSD systems (i.e. systems with more actuators than error sensors) is also considered, to show that in these cases it may be required to use constrained algorithms in order to have numerical stability. Constrained algorithms for multichannel ASC/MSD systems are therefore introduced for two types of constraints: minimisation of the actuator signals power and minimization of the adaptive filters square coefficients. Simulation results are shown to verify the numerical stability of the algorithms introduced in the paper.

Related Organizations
Keywords

Signal theory (characterization, reconstruction, filtering, etc.), sound deconvolution, Least squares and related methods for stochastic control systems, recursive least-squares algorithms, multichannel sound reproduction, constrained least-squares algorithms, active sound cancellation, active noise control, QRD-LSL, QR-RLS

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!