
Clustering analysis has been an emerging research issue in data mining due its variety of applications. In the recent years, it has become an essential tool for gene expression analysis. Many clustering algorithms have been proposed so far. However, each algorithm has its own merits and demerits and can not work for all real situations. In this paper, we present a clustering algorithm that is inspired by minimum spanning tree. To automate and evaluate our algorithm, we incorporate the concept of ratio between the intra-cluster distance (measuring compactness) and the inter-cluster distance (measuring isolation). Experimental results on some complex as well as real world data sets reveal that the proposed algorithm is efficient and competitive with the existing clustering algorithms.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 19 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
