
Accurate monitoring of abnormalities is of great significance to the stable operation of the blast furnace ironmaking process. This paper proposes a data-driven model to accurately monitor the abnormal conditions of blast furnaces. Generally, data-driven models primarily rely on feature extraction from high-dimensional raw data. Recently, deep learning networks have been developed and considered a promising technology in extracting high-level abstract features. However, most of these networks cannot capture deep target-related features for abnormality monitoring. Thus, this paper proposes a novel stacked dynamic target-driven denoising autoencoder (D-DAE) for layer-by-layer hierarchical feature representation, and the dynamic relationship between samples and targets is described by dynamic factors. Then, we design a corresponding target-driven reconstruction loss function to pretrain the deep network successively. Experimental results in an ironmaking plant demonstrate the effectiveness and feasibility of the proposed method.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 35 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
