
We describe the first hardware implementation of a quantum-secure encryption scheme along with its low-cost power side-channel countermeasures. The encryption uses an implementation-friendly Binary-Ring-Learning-with-Errors (B-RLWE) problem with binary errors that can be efficiently generated in hardware. We demonstrate that a direct implementation of B-RLWE exhibits vulnerability to power side-channel attacks, even to Simple Power Analysis, due to the nature of binary coefficients. We mitigate this vulnerability with a redundant addition and memory update. To further protect against Differential Power Analysis (DPA), we use a B-RLWE specific opportunity to construct a lightweight yet effective countermeasure based on randomization of intermediate states and masked threshold decoding. On a SAKURA-G FPGA board, we show that our method increases the required number of measurements for DPA attacks by 40 χ compared to unprotected design. Our results also quantify the trade-off between side-channel security and hardware area-cost of B-RLWE.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 34 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
