Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Consensus-based distributed expectation-maximization algorithm for density estimation and classification using wireless sensor networks

Authors: Pedro A. Forero; Alfonso Cano; Georgios B. Giannakis;

Consensus-based distributed expectation-maximization algorithm for density estimation and classification using wireless sensor networks

Abstract

The present paper develops a decentralized expectation-maximization (EM) algorithm to estimate the parameters of a mixture density model for use in distributed learning tasks performed with data collected at spatially deployed wireless sensors. The E-step in the novel iterative scheme relies on local information available to individual sensors, while during the M-step sensors exchange information only with their one- hop neighbors to reach consensus and eventually percolate the global information needed to estimate the wanted parameters across the wireless sensor network (WSN). Analysis and simulations demonstrate that the resultant consensus-based distributed EM (CB-DEM) algorithm matches well the resource- limited characteristics of WSNs and compares favorably with existing alternatives because it has wider applicability and remains resilient to inter-sensor communication noise.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!