
The present paper develops a decentralized expectation-maximization (EM) algorithm to estimate the parameters of a mixture density model for use in distributed learning tasks performed with data collected at spatially deployed wireless sensors. The E-step in the novel iterative scheme relies on local information available to individual sensors, while during the M-step sensors exchange information only with their one- hop neighbors to reach consensus and eventually percolate the global information needed to estimate the wanted parameters across the wireless sensor network (WSN). Analysis and simulations demonstrate that the resultant consensus-based distributed EM (CB-DEM) algorithm matches well the resource- limited characteristics of WSNs and compares favorably with existing alternatives because it has wider applicability and remains resilient to inter-sensor communication noise.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 25 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
