
Abstract Recommendation methods usually associated with data sparsity. The traditional recommendation methods take the users’ rating information as the recommendation basis, which ignore the latent features that can be taking into consideration to model for better recommendations. In order to deal with these problems, we proposed a latent factor model recommendation algorithm based on stack denoising autoencoder (SDAE-LFM), applying Deep Learning technology for latent feature representation learning. A stack denoising autoencoder is applied to extracting feature about item from the label information. Then we factorize the item feature information to perform matrix decomposition training. Finally, we predict the result by the user-item preference matrix. Experimental results on these datasets demonstrate that the proposed recommendation method has better performance.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
