Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Information Theory
Article . 2023 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2021
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Generalization of Array Codes With Local Properties and Efficient Encoding/Decoding

Authors: Hanxu Hou; Yunghsiang S. Han; Patrick P. C. Lee; You Wu; Guojun Han; Mario Blaum;

A Generalization of Array Codes With Local Properties and Efficient Encoding/Decoding

Abstract

A maximum distance separable (MDS) array code is composed of $m\times (k+r)$ arrays such that any $k$ out of $k+r$ columns suffice to retrieve all the information symbols. Expanded-Blaum-Roth (EBR) codes and Expanded-Independent-Parity (EIP) codes are two classes of MDS array codes that can repair any one symbol in a column by locally accessing some other symbols within the column, where the number of symbols $m$ in a column is a prime number. By generalizing the constructions of EBR and EIP codes, we propose new MDS array codes, such that any one symbol can be locally recovered and the number of symbols in a column can be not only a prime number but also a power of an odd prime number. Also, we present an efficient encoding/decoding method for the proposed generalized EBR (GEBR) and generalized EIP (GEIP) codes based on the LU factorization of a Vandermonde matrix. We show that the proposed decoding method has less computational complexity than existing methods. Furthermore, we show that the proposed GEBR codes have both a larger minimum symbol distance and a larger recovery ability of erased lines for some parameters when compared to EBR codes. We show that EBR codes can recover any $r$ erased lines of a slope for any parameter $r$, which was an open problem in [2].

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Top 10%
Top 10%
Green