
Distributed estimation over networks has received much attention in recent years due to its broad applicability. Many signals in nature present high level of sparsity, which contain only a few large coefficients among many negligible ones. In this paper, we address the problem of in-network distributed estimation for sparse vectors, and develop several distributed sparse recursive least-squares (RLS) algorithms. The proposed algorithms are based on the maximum likelihood framework, and the expectation-maximization algorithm, with the aid of thresholding operators, is used to numerically solve the sparse estimation problem. To improve the estimation performance, the thresholding operators related to l0- and l1-norms with real-time self-adjustable thresholds are derived. With these thresholding operators, we can exploit the underlying sparsity to implement the distributed estimation with low computational complexity and information exchange amount among neighbors. The sparsity-promoting intensity is also adaptively adjusted so that a good performance of the sparse solution can be achieved. Both theoretical analysis and numerical simulations are presented to show the effectiveness of the proposed algorithms.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 87 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
