Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental Entomo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Entomology
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Instar Determination for the Tomato Leafminer Tuta absoluta (Lepidoptera: Gelechiidae) Using the Density-Based OPTICS Clustering Algorithm

Authors: Wenqian Wang; Guanli Xiao; Baoyun Yang; Jvhui Ye; Xu Zhang; Yaqiang Zheng; Bin Chen;

Instar Determination for the Tomato Leafminer Tuta absoluta (Lepidoptera: Gelechiidae) Using the Density-Based OPTICS Clustering Algorithm

Abstract

Abstract The tomato leafminer Tuta absoluta (Meyrick) is one of the most harmful pests of solanaceous crops. Its larval morphological characteristics are similar, making the distinguishing between different larval instars difficult. Accurate identification of T. absoluta instars is necessary either for population outbreak forecasting, or developing successful control programs. Although a clustering algorithm can be used to determine the number of larval instars, little is known regarding the use of density-based ordering points to identify the clustering structure (OPTICS) and determine the number of larvae. In this study, larval instars of 240 T. absoluta individuals were determined by the density-based OPTICS clustering method, based on mandible width, and head capsule width and length. To verify the feasibility of the OPTICS clustering method, we compared it with the density-based spatial clustering of applications with noise (DBSCAN) clustering algorithm, Gaussian mixture models, and k-means. Additionally, the instars determined by the clustering methods were verified using the Brooks–Dyar rule, Crosby rule, and linear regression model. The instars determined by the OPTICS clustering method were equal to those determined by the other types of clustering algorithms, and the instar results were consistent with the Brooks–Dyar rule, Crosby rule, frequency analysis, and logarithmic regression model. These results indicated that the OPTICS clustering method is robust for determining insect larva instar phase. Moreover, it was found that three morphological indices of T. absoluta can be used for determining instars of this pest in the field, which may provide important information for the management of T. absoluta populations.

Related Organizations
Keywords

Solanum lycopersicum, Larva, Animals, Cluster Analysis, Moths, Entomology, Algorithms, Pest Management

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Green
hybrid