Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IET Intelligent Tran...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Intelligent Transport Systems
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Intelligent Transport Systems
Article . 2021
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

UGV‐UAV robust cooperative positioning algorithm with object detection

Authors: Dongjia Wang; Baowang Lian; Chengkai Tang;

UGV‐UAV robust cooperative positioning algorithm with object detection

Abstract

Abstract Traditional Global Navigation Satellite Systems (GNSS) experience their limitations in urban canyons. However, it is significant to improve the accuracy of positioning with the rapid development of smart cities. To solve this problem, a UGV‐UAV robust cooperative positioning algorithm with object detection is proposed, which utilises an unmanned aerial vehicle (UAV) to assist an unmanned ground vehicle (UGV) to achieve accurate positioning. When the UAV is in the sky with a good reception of satellite signals, the UGV uses the YOLOv3 object detection method to detect the UAV in images captured by camera, and acquires visual measurements including angles and ranges of the ground camera relative to the UAV through the proposed monocular vision measuring with object detection (ODMVM) model. Then, in order to solve the problem that visual measurement is disturbed by the real world, a robust Kalman filter is introduced that integrates measurements from available GNSS, inertial measurement unit (IMU), monocular camera, and the position broadcast of cooperative UAV to obtain more robust and accurate position estimation. Experimental and simulation results show that the proposed cooperation positioning algorithm can improve the positioning accuracy by 73.63% compared with the traditional cooperation positioning algorithm in urban canyons.

Related Organizations
Keywords

Filtering methods in signal processing, TA1001-1280, Aerospace control, Image sensors, QA75.5-76.95, Transportation engineering, Spatial variables control, Radionavigation and direction finding, Optical, image and video signal processing, Electronic computers. Computer science

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Top 10%
Top 10%
gold