
Abstract Spatial transcriptomics (ST) technology provides gene expression profiles with spatial context, offering critical insights into cellular interactions and tissue architecture. A core task in ST is spatial domain identification, which involves detecting coherent regions with similar spatial expression patterns. However, existing methods often fail to fully exploit spatial information, leading to limited representational capacity and suboptimal clustering accuracy. Here, we introduce MAEST, a novel graph neural network model designed to address these limitations in ST data. MAEST leverages graph masked autoencoders to denoise and refine representations while incorporating graph contrastive learning to prevent feature collapse and enhance model robustness. By integrating one-hop and multi-hop representations, MAEST effectively captures both local and global spatial relationships, improving clustering precision. Extensive experiments across diverse datasets, including the human brain, mouse hippocampus, olfactory bulb, brain, and embryo, demonstrate that MAEST outperforms seven state-of-the-art methods in spatial domain identification. Furthermore, MAEST showcases its ability to integrate multi-slice data, identifying joint domains across horizontal tissue sections with high accuracy. These results highlight MAEST’s versatility and effectiveness in unraveling the spatial organization of complex tissues. The source code of MAEST can be obtained at https://github.com/clearlove2333/MAEST.
Mice, Gene Expression Profiling, Problem Solving Protocol, Humans, Animals, Brain, Computational Biology, Neural Networks, Computer, Autoencoder, Transcriptome, Hippocampus, Algorithms, Software
Mice, Gene Expression Profiling, Problem Solving Protocol, Humans, Animals, Brain, Computational Biology, Neural Networks, Computer, Autoencoder, Transcriptome, Hippocampus, Algorithms, Software
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
