Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Kidney Internationalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Kidney International
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Endothelial but not systemic ferroptosis inhibition protects from antineutrophil cytoplasmic antibody–induced crescentic glomerulonephritis

Authors: Anthony Rousselle; Dörte Lodka; Janis Sonnemann; Lovis Kling; Ralph Kettritz; Adrian Schreiber;

Endothelial but not systemic ferroptosis inhibition protects from antineutrophil cytoplasmic antibody–induced crescentic glomerulonephritis

Abstract

Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAV) are systemic autoimmune diseases featuring small blood vessel inflammation and organ damage, including necrotizing crescentic glomerulonephritis (NCGN). Persistent vascular inflammation leads to endothelial and kidney cell necrosis. Ferroptosis is a regulated cell death pathway executed by reactive oxygen species and iron-dependent lipid peroxidation culminating in cell membrane rupture. Here we show that ANCA-activated neutrophils induced endothelial cell (EC) death in vitro that was prevented by ferroptosis inhibition with Ferrostatin-1, Liproxstatin-1 and small inhibiting RNA against the enzyme AcylCoA Synthetase Long Chain Family Member 4 (ACSL4). In contrast, neither necroptosis nor apoptosis inhibition affected EC death. Moreover, both ferroptosis inhibitors alleviated lipid peroxide accumulation in EC. Increased lipid peroxidation was detected in kidney sections of AAV mice by immunohistochemistry. We generated MPO-/- ACSL4flox Tie2-Cre+ mice lacking ACSL4 specifically in EC (ACSL4ΔEC) to study the significance of endothelial ferroptosis in vivo. ACSL4ΔEC chimeric mice, but not control mice (ACSL4WT), were protected from NCGN in a MPO-AAV bone-marrow transplantation model. These data establish that EC ferroptosis contributes to ANCA-induced glomerulonephritis. However, systemic pharmacological ferroptosis inhibition with Ferrostatin-1 or Liproxstatin-1 did not protect from NCGN in a murine AAV model. Ferrostatin-1 treatment both directly activated T cell proliferation and indirectly myeloid-mediated T cell proliferation and polarization in vitro. Conceivably, both effects may cancel the beneficial effect of endothelial ferroptosis inhibition. Mechanistically, we describe the importance of EC ferroptosis for the development of AAV. However, the lack of protection with systemic pharmacological ferroptosis inhibition should discourage clinicians from evaluating this treatment strategy in clinical AAV studies.

Keywords

Cardiovascular and Metabolic Diseases, Integrative Biomedicine [Topic 3], Function and Dysfunction of the Nervous System, Molecular Processes and Therapies [Topic 2]

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green
hybrid