Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ibn Al-Haitham Journ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Ibn Al-Haitham Journal for Pure and Applied Sciences
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mobility Prediction Based on Deep Learning Approach Using GPS Phone Data

Authors: null Suhad Faisal Behadil; null Nabaa Kareem Mhalhal1;

Mobility Prediction Based on Deep Learning Approach Using GPS Phone Data

Abstract

Accurate prediction of activity location is a crucial component in various mobility applications and is particularly vital for the creation of customized, environmentally friendly transport systems. Next-location prediction, which entails predicting a user's forthcoming place by analyzing their previous movement patterns, has substantial ramifications in diverse fields, such as urban planning, geo-marketing, disease transmission, wireless network performance, recommender systems, and numerous other sectors. Recently, researchers have proposed a variety of predictors, including cutting-edge ones that utilize advanced deep learning methods, to tackle this problem. This study introduces robust models for predicting a user's future location based on their previous location. It proposes a Recurrent Neural Networks (RNNs) prediction scheme and a Gated Recurrent Unit (GRU), which are well-suited for learning from sequential data. Additionally, the clustering technique Density-Based Clustering (DBSCAN) is implemented to extract the stay points. Furthermore, the suggested method is more accurate at predicting the future than the current method, showing improvements in loss mean square error of up to 0.0005 in the RNN model and 0.01 in the GUR model. So, the models that were used led to a decrease in loss MSE, which was shown in the real-world dataset (Geolife) in this paper. The results are also consistent with other similar works that look at the same issue, showing how well the models can predict mobility.

Keywords

RNNs, Deep Learning, Density-Based Clustering (DBSCAN), Next Location Path, Science, Recurrent Neural Network, Q, Gated Recurrent Unit (GRU)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold