
Chronic Obstructive Pulmonary Disease (COPD) is a major contributor to global morbidity and healthcare costs. Accurately predicting these costs is crucial for resource allocation and patient care. This study developed and validated an AI-driven COPD Medical Cost Prediction Index (MCPI) to forecast healthcare expenses in COPD patients.A retrospective analysis of 396 COPD patients was conducted, utilizing clinical, demographic, and comorbidity data. Missing data were addressed through advanced imputation techniques to minimize bias. The final predictors included interactions such as Age × BMI, alongside Tumor Presence, Number of Comorbidities, Acute Exacerbation frequency, and the DOSE Index. A Gradient Boosting model was constructed, optimized with Recursive Feature Elimination (RFE), and evaluated using 5-fold cross-validation on an 80/20 train-test split. Model performance was assessed with Mean Squared Error (MSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and R-squared (R²).On the training set, the model achieved an MSE of 0.049, MAE of 0.159, MAPE of 3.41 %, and R² of 0.703. On the test set, performance metrics included an MSE of 0.122, MAE of 0.258, MAPE of 5.49 %, and R² of 0.365. Tumor Presence, Age, and BMI were identified as key predictors of cost variability.The MCPI demonstrates strong potential for predicting healthcare costs in COPD patients and enables targeted interventions for high-risk individuals. Future research should focus on validation with multicenter datasets and the inclusion of additional socioeconomic variables to enhance model generalizability and precision.
Gradient boosting model, Recursive Feature Elimination, COPD, 5-fold cross-validation, MCPI, TP248.13-248.65, Biotechnology, Research Article
Gradient boosting model, Recursive Feature Elimination, COPD, 5-fold cross-validation, MCPI, TP248.13-248.65, Biotechnology, Research Article
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
