Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Psychological Methods
Article . 2023
License: taverne
Psychological Methods
Article . 2023 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2021
License: CC BY NC ND
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Assessing an alternative for “negative variance components”: A gentle introduction to Bayesian covariance structure modeling for negative associations among patients with personalized treatments.

A Gentle Introduction to Bayesian Covariance Structure Modeling for Negative Associations Among Patients With Personalized Treatments
Authors: Jean-Paul Fox; Wouter A. C. Smink;

Assessing an alternative for “negative variance components”: A gentle introduction to Bayesian covariance structure modeling for negative associations among patients with personalized treatments.

Abstract

The multilevel model (MLM) is the popular approach to describe dependences of hierarchically clustered observations. A main feature is the capability to estimate (cluster-specific) random effect parameters, while their distribution describes the variation across clusters. However, the MLM can only model positive associations among clustered observations, and it is not suitable for small sample sizes. The limitation of the MLM becomes apparent when estimation methods produce negative estimates for random effect variances, which can be seen as an indication that observations are negatively correlated. A gentle introduction to Bayesian Covariance Structure Modelling (BCSM) is given, which makes it possible to model also negatively correlated observations. The BCSM does not model dependences through random (cluster-specific) effects, but through a covariance matrix. We show that this makes the BCSM particularly useful for small data samples. We draw specific attention to detect effects of a personalized intervention. The effect of a personalized treatment can differ across individuals, and this can lead to negative associations among measurements of individuals who are treated by the same therapist. It is shown that the BCSM enables the modeling of negative associations among clustered measurements and aids in the interpretation of negative clustering effects. Through a simulation study and by analysis of a real data example, we discuss the suitability of the BCSM for small data sets and for exploring effects of individualized treatments, specifically when (standard) MLM software produces negative or zero variance estimates.

4 figures, 3 tables

Related Organizations
Keywords

FOS: Computer and information sciences, Individualized treatment, Bayes Theorem, Multilevel modeling, Negative clustering effects, Statistics - Computation, Methodology (stat.ME), Sample Size, Multilevel Analysis, Negative variance estimates, Humans, Bayesian covariance structure modeling (bcsm), Computer Simulation, 22/1 OA procedure, Statistics - Methodology, Software, Computation (stat.CO)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Green
bronze
Related to Research communities