Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ UPCommons. Portal de...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/pdp559...
Article . 2022 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analyzing the performance of hierarchical collective algorithms on ARM-based multicore clusters

Authors: Utrera Iglesias, Gladys Miriam; Gil, Marisa; Martorell Bofill, Xavier;

Analyzing the performance of hierarchical collective algorithms on ARM-based multicore clusters

Abstract

MPI is the de facto communication standard library for parallel applications in distributed memory architectures. Collective operations performance is critical in HPC applications as they can become the bottleneck of their executions. The advent of larger node sizes on multicore clusters has motivated the exploration of hierarchical collective algorithms aware of the process placement in the cluster and the memory hierarchy. This work analyses and compares several hierarchical collective algorithms from the literature that do not form part of the current MPI standard. We implement the algorithms on top of OpenMPI using the shared-memory facility provided by MPI-3 at the intra-node level and evaluate them on ARM-based multicore clusters. From our results, we evidence aspects of the algorithms that impact the performance and applicability of the different algorithms. Finally, we propose a model that helps us to analyze the scalability of the algorithms.

This work has been supported by the Spanish Ministry of Education (PID2019-107255GB-C22) and the Generalitat de Catalunya (2017-SGR-1414).

Peer Reviewed

Keywords

Clustering algorithms, Performance, ARM processors, Gestió de memòria (Informàtica), Communications standard, Parallel application, Computer algorithms, Àrees temàtiques de la UPC::Informàtica::Informàtica teòrica::Algorísmica i teoria de la complexitat, Distributed memory architecture, Memory management (Computer science), Multi-core cluster, Shared memory, Àrees temàtiques de la UPC::Informàtica::Arquitectura de computadors, Collective, HPC, Algorismes computacionals, MPI, High performance computing, Standard libraries, Càlcul intensiu (Informàtica), Memory architecture

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 57
    download downloads 113
  • 57
    views
    113
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
1
Average
Average
Average
57
113
Green