Downloads provided by UsageCounts
handle: 2117/381194
MPI is the de facto communication standard library for parallel applications in distributed memory architectures. Collective operations performance is critical in HPC applications as they can become the bottleneck of their executions. The advent of larger node sizes on multicore clusters has motivated the exploration of hierarchical collective algorithms aware of the process placement in the cluster and the memory hierarchy. This work analyses and compares several hierarchical collective algorithms from the literature that do not form part of the current MPI standard. We implement the algorithms on top of OpenMPI using the shared-memory facility provided by MPI-3 at the intra-node level and evaluate them on ARM-based multicore clusters. From our results, we evidence aspects of the algorithms that impact the performance and applicability of the different algorithms. Finally, we propose a model that helps us to analyze the scalability of the algorithms.
This work has been supported by the Spanish Ministry of Education (PID2019-107255GB-C22) and the Generalitat de Catalunya (2017-SGR-1414).
Peer Reviewed
Clustering algorithms, Performance, ARM processors, Gestió de memòria (Informàtica), Communications standard, Parallel application, Computer algorithms, Àrees temàtiques de la UPC::Informàtica::Informàtica teòrica::Algorísmica i teoria de la complexitat, Distributed memory architecture, Memory management (Computer science), Multi-core cluster, Shared memory, Àrees temàtiques de la UPC::Informàtica::Arquitectura de computadors, Collective, HPC, Algorismes computacionals, MPI, High performance computing, Standard libraries, Càlcul intensiu (Informàtica), Memory architecture
Clustering algorithms, Performance, ARM processors, Gestió de memòria (Informàtica), Communications standard, Parallel application, Computer algorithms, Àrees temàtiques de la UPC::Informàtica::Informàtica teòrica::Algorísmica i teoria de la complexitat, Distributed memory architecture, Memory management (Computer science), Multi-core cluster, Shared memory, Àrees temàtiques de la UPC::Informàtica::Arquitectura de computadors, Collective, HPC, Algorismes computacionals, MPI, High performance computing, Standard libraries, Càlcul intensiu (Informàtica), Memory architecture
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 57 | |
| downloads | 113 |

Views provided by UsageCounts
Downloads provided by UsageCounts