Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ EPJ Data Sciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
EPJ Data Science
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
EPJ Data Science
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Scaling hermeneutics: a guide to qualitative coding with LLMs for reflexive content analysis

Authors: Zackary Okun Dunivin;

Scaling hermeneutics: a guide to qualitative coding with LLMs for reflexive content analysis

Abstract

Abstract Qualitative coding, or content analysis, is more than just labeling text: it is a reflexive interpretive practice that shapes research questions, refines theoretical insights, and illuminates subtle social dynamics. As large language models (LLMs) become increasingly adept at nuanced language tasks, questions arise about whether—and how—they can assist in large-scale coding without eroding the interpretive depth that distinguishes qualitative analysis from traditional machine learning and other quantitative approaches to natural language processing. In this paper, we present a hybrid approach that preserves hermeneutic value while incorporating LLMs to scale the application of codes to large data sets that are impractical for manual coding. Our workflow retains the traditional cycle of codebook development and refinement, adding an iterative step to adapt definitions for machine comprehension, before ultimately replacing manual with automated text categorization. We demonstrate how to rewrite code descriptions for LLM-interpretation, as well as how structured prompts and prompting the model to explain its coding decisions (chain-of-thought) can substantially improve fidelity. Empirically, our case study of socio-historical codes highlights the promise of frontier AI language models to reliably interpret paragraph-long passages representative of a humanistic study. Throughout, we emphasize ethical and practical considerations, preserving space for critical reflection, and the ongoing need for human researchers’ interpretive leadership. These strategies can guide both traditional and computational scholars aiming to harness automation effectively and responsibly—maintaining the creative, reflexive rigor of qualitative coding while capitalizing on the efficiency afforded by LLMs.

Keywords

LLM, Computer applications to medicine. Medical informatics, R858-859.7, Text categorization, Content analysis, Qualitative coding, Digital humanities

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
gold
Related to Research communities