Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2022
Data sources: DOAJ
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

Hybrid Precoding and Combining Strategy for MMSE-Based Rate Balancing in mmWave Multiuser MIMO Systems

Authors: Woohyeong Park; Jihoon Choi;

Hybrid Precoding and Combining Strategy for MMSE-Based Rate Balancing in mmWave Multiuser MIMO Systems

Abstract

In this paper, a new hybrid precoding and combining method is proposed for the downlink of multiuser multiple-input multiple-output (MU-MIMO) millimeter wave (mmWave) channels. The proposed method designs the precoders and combiners for radio frequency (RF) and baseband processing, respectively, based on the minimum mean square error (MMSE) criterion and the rate fairness among users. To design the RF precoder and combiners implemented by phase shifters, a new matrix factorization algorithm is devised by combining the gradient method with the orthogonal projection. Under the total transmit power constraint, the proposed factorization method increases the achievable rate by making the columns of the RF precoder near-orthogonal and growing the Frobenius norm of the baseband precoder. In addition, a new MMSE-based rate balancing algorithm is proposed to design the baseband precoder and combiners in terms of maximizing the minimum user rate. The proposed rate balancing scheme iteratively updates the baseband precoder, the transmit power constraint for the baseband precoder, the baseband combiners, and the weighting vector for rate balancing. Through theoretical analysis, it is shown that the proposed design method has a polynomial complexity order. Numerical simulations present that the proposed matrix factorization method outperforms existing schemes requiring low computational complexity and the proposed rate balancing scheme converges to a stationary point satisfying the total transmit power constraint. Moreover, simulation results in MU-MIMO channels are provided to show that the proposed design scheme performs better than existing hybrid processing schemes while achieving the minimum user rate close to the upper bound of MMSE processing.

Related Organizations
Keywords

multiuser MIMO, rate balancing, mmWave communication, Electrical engineering. Electronics. Nuclear engineering, Hybrid precoding, matrix factorization, MMSE, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
gold