
pmid: 19162872
The core of activity recognition in mobile wellness devices is a classification engine which maps observations from sensors to estimated classes. There exists a vast number of different classification algorithms that can be used for this purpose in the machine learning literature. Unfortunately, the computational and space requirements of these methods are often too high for the current mobile devices. In this paper we study a simple linear classifier and find, automatically with SFS and SFFS feature selection methods, a suitable set of features to be used with the classification method. The results show that the simple classifier performs comparable to more complex nonlinear k-Nearest Neighbor Classifier. This depicts great potential in implementing the classifier in small mobile wellness devices.
context recognition, Monitoring, Ambulatory, Health Promotion, Motor Activity, Decision Support Systems, Clinical, Pattern Recognition, Automated, pattern classification, Humans, activity recognition, Diagnosis, Computer-Assisted, Wellness platforms, Algorithms
context recognition, Monitoring, Ambulatory, Health Promotion, Motor Activity, Decision Support Systems, Clinical, Pattern Recognition, Automated, pattern classification, Humans, activity recognition, Diagnosis, Computer-Assisted, Wellness platforms, Algorithms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
