Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Isletsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Islets
Article . 2018 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Islets
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Islets
Article . 2019
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Neprilysin inhibition in mouse islets enhances insulin secretion in a GLP-1 receptor dependent manner

Authors: Nathalie Esser; Breanne M. Barrow; Edwina Choung; Nancy J. Shen; Sakeneh Zraika;

Neprilysin inhibition in mouse islets enhances insulin secretion in a GLP-1 receptor dependent manner

Abstract

Neprilysin, a widely expressed peptidase upregulated in type 2 diabetes, is capable of cleaving and inactivating the insulinotropic glucagon-like peptide-1 (GLP-1). Like dipeptidyl peptidase-4 (DPP-4), inhibition of neprilysin activity under diabetic conditions is associated with increased active GLP-1 levels and improved glycemic control. While neprilysin expression has been demonstrated in islets, its local contribution to GLP-1-mediated insulin secretion remains unknown. We investigated in vitro whether islet neprilysin inhibition enhances insulin secretion in response to glucose and/or exogenous GLP-1, and whether these effects are mediated by GLP-1 receptor (GLP-1R). Further, we compared the effect of neprilysin versus DPP-4 inhibition on insulin secretion. Isolated islets from wild-type (Glp1r+/+) and GLP-1 receptor knockout (Glp1r-/-) mice were incubated with or without the neprilysin inhibitor thiorphan and/or the DPP-4 inhibitor sitagliptin for 2.5 hours. During the last hour, insulin secretion was assessed in response to 2.8 mmol/l or 20 mmol/l glucose alone or plus exogenous active GLP-1. In Glp1r+/+ islets, neprilysin inhibition enhanced 2.8 mmol/l and 20 mmol/l glucose- and GLP-1-mediated insulin secretion to the same extent as DPP-4 inhibition. These effects were blunted in Glp1r-/- islets. In conclusion, inhibition of islet neprilysin in vitro increases glucose-mediated insulin secretion in a GLP-1R-dependent manner and enhances the insulinotropic effect of exogenous active GLP-1. Thus, neprilysin inhibitors may have therapeutic potential in type 2 diabetes by preserving islet-derived and circulating active GLP-1 levels.

Related Organizations
Keywords

Blood Glucose, insulin secretion, Dipeptidyl Peptidase 4, Diabetes Mellitus, Type 2/drug therapy/metabolism, Insulin Secretion/drug effects/physiology, Sciences de la santé humaine, Glucagon-Like Peptide-1 Receptor, neprilysin, Diabetes Mellitus, Experimental, Glucagon-Like Peptide-1 Receptor/metabolism, Islets of Langerhans, Mice, DPP-4, Endocrinology, metabolism & nutrition, Insulin Secretion, Animals, Human health sciences, Enzyme Inhibitors, Enzyme Inhibitors/pharmacology, Mice, Knockout, Dipeptidyl-Peptidase IV Inhibitors, Blood Glucose/metabolism, islet, Treatment Outcome, Diabetes Mellitus, Type 2, Dipeptidyl-Peptidase IV Inhibitors/pharmacology, Neprilysin/antagonists & inhibitors/metabolism, Neprilysin, Islets of Langerhans/metabolism, GLP-1, Dipeptidyl Peptidase 4/metabolism, Endocrinologie, métabolisme & nutrition

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Top 10%
Top 10%
gold