Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Griffith Research On...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Information Theory
Article . 2001 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Efficient root-finding algorithm with application to list decoding of algebraic-geometric codes

Authors: Xin-Wen Wu; Paul H. Siegel;

Efficient root-finding algorithm with application to list decoding of algebraic-geometric codes

Abstract

Summary: A list decoding for an error-correcting code is a decoding algorithm that generates a list of codewords within a Hamming distance \(t\) from the received vector, where \(t\) can be greater than the error-correction bound. In [\textit{M. Shokrollahi} and \textit{H. Wasserman}, ibid. 45, 432-437 (1999; Zbl 0947.94024)], a list-decoding procedure for Reed-Solomon codes [\textit{M. Sudan}, J. Complexity 13, 180-193 (1997; Zbl 0872.68026)] was generalized to algebraic-geometric codes. A recent work [\textit{V. Guruswami} and \textit{M. Sudan}, ibid. 45, 1757-1767 (1999; Zbl 0958.94036)] gives improved list decodings for Reed-Solomon codes and algebraic-geometric codes that work for all rates and have many applications. However, these list-decoding algorithms are rather complicated. In [ibid. 46, 246-257 (2000; Zbl 1001.94046)], \textit{R. Roth} and \textit{G. Ruckenstein} proposed an efficient implementation of the list decoding of Reed-Solomon codes. In this correspondence, extending Roth and Ruckenstein's fast algorithm for finding roots of univariate polynomials over polynomial rings, i.e., the reconstruct algorithm, we will present an efficient algorithm for finding the roots of univariate polynomials over function fields. Based on the extended algorithm, we give an efficient list-decoding algorithm for algebraic-geometric codes.

Related Organizations
Keywords

Communications Technologies, Artificial Intelligence and Image Processing, Decoding, Applications to coding theory and cryptography of arithmetic geometry, Coding and Information Theory, root-finding algorithm, function fields, algebraic-geometric codes, Numerical computation of solutions to single equations, Electrical and Electronic Engineering, list decoding, Geometric methods (including applications of algebraic geometry) applied to coding theory

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Top 10%
Average
Green
bronze