
arXiv: 2306.13159
We prove that if a continuous function $f$ in an open subset $U\subset\mathbb{C}$ is analytic in $U\setminus X$, where $X\subset U$ is a Polish space having characteristic system $(k,n)\in\mathbb N_0\times\mathbb N$, then the complex line integral of $f$ along the boundary of any triangle in $U$ vanishes.
30E20, 03E10, 51M15, Mathematics - Complex Variables, FOS: Mathematics, Complex Variables (math.CV)
30E20, 03E10, 51M15, Mathematics - Complex Variables, FOS: Mathematics, Complex Variables (math.CV)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
