
Graphical abstractDisplay Omitted HighlightsWe consider integrated process planning and scheduling for remanufacturing.Two potentially conflicting objective functions are considered simultaneously.A simulation-based genetic algorithm approach is developed.Key parameters of the algorithm have been fine-tuned.Extensive computational experiments and evaluations have been performed. Remanufacturing has attracted growing attention in recent years because of its energy-saving and emission-reduction potential. Process planning and scheduling play important roles in the organization of remanufacturing activities and directly affect the overall performance of a remanufacturing system. However, the existing research on remanufacturing process planning and scheduling is very limited due to the difficulty and complexity brought about by various uncertainties in remanufacturing processes. We address the problem by adopting a simulation-based optimization framework. In the proposed genetic algorithm, a solution represents the selected process routes for the jobs to be remanufactured, and the quality of a solution is evaluated through Monte Carlo simulation, in which a production schedule is generated following the specified process routes. The studied problem includes two objective functions to be optimized simultaneously (one concerned with process planning and the other concerned with scheduling), and therefore, Pareto-based optimization principles are applied. The proposed solution approach is comprehensively tested and is shown to outperform a standard multi-objective optimization algorithm.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 61 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
