Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Transactions on...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
UCL Discovery
Article . 2018
Data sources: UCL Discovery
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Communications
Article . 2019 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Efficient NFV-Enabled Multicasting in SDNs

Authors: Zichuan Xu; Weifa Liang; Meitian Huang; Mike Jia; Song Guo 0001; Alex Galis;

Efficient NFV-Enabled Multicasting in SDNs

Abstract

Multicasting is a fundamental functionality of many network applications, including online conferencing, event monitoring, video streaming, and so on. To ensure reliable, secure, and scalable multicasting, a service chain that consists of network functions (e.g., firewalls, intrusion detection systems, and transcoders) usually is associated with each multicast request. We refer to such a multicast request with service chain requirement as an network function virtualization (NFV)-enabled multicast request. In this paper, we study NFV-enabled multicasting in a software-defined network (SDN) with an aim to maximize network throughput while minimizing the implementation cost of admitted NFV-enabled multicast requests, subject to network resource capacity, where the implementation cost of a request consists of its computing resource consumption cost in servers and its network bandwidth consumption cost when routing and processing its data packets in the network. To this end, we first formulate two NFV-enabled multicasting problems with and without resource capacity constraints and one online NFV-enabled multicasting problem. We then devise two approximation algorithms with an approximation ratio of $2M$ for the NFV-enabled multicasting problems with and without resource capacity constraints, if the number of servers for implementing the service chain of each request is no greater than a constant $M$ (≥1). We also study dynamic admissions of NFV-enabled multicast requests without the knowledge of future request arrivals with the objective to maximize the network throughput, for which we propose an efficient heuristic, and for the special case of dynamic request admissions, we devise an online algorithm with a competitive ratio of $O(\log n)$ for it when $M=1$ , where $n$ is the number of nodes in the network. We finally evaluate the performance of the proposed algorithms through experimental simulations. Experimental results demonstrate that the proposed algorithms are promising and outperform existing heuristics.

Countries
United Kingdom, China (People's Republic of), China (People's Republic of)
Keywords

Network function virtualization, virtualized network functions, Online algorithms, Multicasting, approximation and online algorithms, software-defined networks, service chains, Software-defined networks, NFV-enabled multicasting, routing, Virtualized network functions, Service chains, Approximation, multicasting, Routing

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    50
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
50
Top 10%
Top 10%
Top 1%
Green
bronze