Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2020
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Majorization-Minimization Algorithm for Discriminative Non-Negative Matrix Factorization

Authors: Li Li; Hirokazu Kameoka; Shoji Makino;

Majorization-Minimization Algorithm for Discriminative Non-Negative Matrix Factorization

Abstract

This paper proposes a basis training algorithm for discriminative non-negative matrix factorization (NMF) with applications to single-channel audio source separation. With an NMF-based approach to supervised audio source separation, NMF is first applied to train the basis spectra of each source using training examples and then applied to the spectrogram of a mixture signal using the pretrained basis spectra at test time. The source signals can then be separated out using a Wiener filter. Here, a typical way to train the basis spectra is to minimize the dissimilarity measure between the observed spectrogram and the NMF model. However, obtaining the basis spectra in this way does not ensure that the separated signal will be optimal at test time due to the inconsistency between the objective functions for training and separation (Wiener filtering). To address this mismatch, a framework called discriminative NMF (DNMF) has recently been proposed. While this framework is noteworthy in that it uses a common objective function for training and separation, the objective function becomes more analytically complex than that of regular NMF. In the original DNMF work, a multiplicative update algorithm was proposed for the basis training; however, the convergence of the algorithm is not guaranteed and can be very slow. To overcome this weakness, this paper proposes a convergence-guaranteed algorithm for DNMF based on a majorization-minimization principle. Experimental results show that the proposed algorithm outperform the conventional DNMF algorithm as well as the regular NMF algorithm in terms of both the signal-to-distortion and signal-to-interference ratios.

Related Organizations
Keywords

majorization-minimization, Discriminative non-negative matrix factorization (NMF), single-channel signal processing, source separation, speech enhancement, Electrical engineering. Electronics. Nuclear engineering, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold