
arXiv: 2307.00185
This paper introduces an Interpretable Neural Network (INN) incorporating spatial information to tackle the opaque parameterization process of random weighted neural networks. The INN leverages spatial information to elucidate the connection between parameters and network residuals. Furthermore, it devises a geometric relationship strategy using a pool of candidate nodes and established relationships to select node parameters conducive to network convergence. Additionally, a lightweight version of INN tailored for large-scale data modeling tasks is proposed. The paper also showcases the infinite approximation property of INN. Experimental findings on various benchmark datasets and real-world industrial cases demonstrate INN's superiority over other neural networks of the same type in terms of modeling speed, accuracy, and network structure.
FOS: Computer and information sciences, Computer Science - Machine Learning, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
