Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuroinformatics
Article . 2022 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Design and Application of Automated Algorithms for Diagnosis and Treatment Optimization in Neurodegenerative Diseases

Authors: Francisco Estella; Esther Suarez; Beatriz Lozano; Elena Santamarta; Antonio Saiz; Fernando Rojas; Ignacio Rojas; +4 Authors

Design and Application of Automated Algorithms for Diagnosis and Treatment Optimization in Neurodegenerative Diseases

Abstract

Neurodegenerative diseases represent a growing healthcare problem, mainly related to an aging population worldwide and thus their increasing prevalence. In particular, Alzheimer's disease (AD) and Parkinson's disease (PD) are leading neurodegenerative diseases. To aid their diagnosis and optimize treatment, we have developed a classification algorithm for AD to manipulate magnetic resonance images (MRI) stored in a large database of patients, containing 1,200 images. The algorithm can predict whether a patient is healthy, has mild cognitive impairment, or already has AD. We then applied this classification algorithm to therapeutic outcomes in PD after treatment with deep brain stimulation (DBS), to assess which stereotactic variables were the most important to consider when performing surgery in this indication. Here, we describe the stereotactic system used for DBS procedures, and compare different planning methods with the gold standard normally used (i.e., neurophysiological coordinates recorded intraoperatively). We used information collected from database of 72 DBS electrodes implanted in PD patients, and assessed the potentially most beneficial ranges of deviation within planning and neurophysiological coordinates from the operating room, to provide neurosurgeons with additional landmarks that may help to optimize outcomes: we observed that x coordinate deviation within CT scan and gold standard intra-operative neurophysiological coordinates is a robust matric to pre-assess positive therapy outcomes- "good therapy" prediction if deviation is higher than 2.5 mm. When being less than 2.5 mm, adding directly calculated variables deviation (on Y and Z axis) would lead to specific assessment of "very good therapy".

Keywords

Decision trees, Parkinson's disease, Deep Brain Stimulation, Neurodegenerative Diseases, Parkinson Disease, Alzheimer's disease, Classification, Magnetic Resonance Imaging, Electrodes, Implanted, Alzheimer Disease, Deep brain stimulation, Humans, Algorithms, Aged

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green