
Summary: This paper concerns large-scale general (nonconvex) nonlinear programming when first and second derivatives of the objective and constraint functions are available. A method is proposed that is based on finding an approximate solution of a sequence of unconstrained subproblems parameterized by a scalar parameter. The objective function of each unconstrained subproblem is an augmented penalty-barrier function that involves both primal and dual variables. Each subproblem is solved with a modified Newton method that generates search directions from a primal-dual system similar to that proposed for interior methods. The augmented penalty-barrier function may be interpreted as a merit function for values of the primal and dual variables. An inertia-controlling symmetric indefinite factorization is used to provide descent directions and directions of negative curvature for the augmented penalty-barrier merit function. A method suitable for large problems can be obtained by providing a version of this factorization that will treat large sparse indefinite systems.
Large-scale problems in mathematical programming, Numerical methods based on nonlinear programming, barrier methods, modified Newton methods, Direct numerical methods for linear systems and matrix inversion, Nonconvex programming, global optimization, constrained minimization, penalty methods, Numerical mathematical programming methods, Nonlinear programming, nonlinear programming, interior methods, primal-dual methods
Large-scale problems in mathematical programming, Numerical methods based on nonlinear programming, barrier methods, modified Newton methods, Direct numerical methods for linear systems and matrix inversion, Nonconvex programming, global optimization, constrained minimization, penalty methods, Numerical mathematical programming methods, Nonlinear programming, nonlinear programming, interior methods, primal-dual methods
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 101 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
