
With the combined multiscale Gaussian kernel and Morlet wavelet kernel, two multiscale kernel sparse coding‐based classifiers (MKSCCs) are proposed for radar target recognition using high‐resolution range profiles (HRRPs). The kernel trick can make samples more clustered in higher‐dimensional space. Moreover, the multiscale kernels at different scales have advantages of good generalisation and primary signature capturing ability for target's HRRP, which are helpful to improve the target recognition accuracy and robustness of MKSCC further. Numerous experiments are conducted on five types of ground vehicles’ HRRP data and the authors also make comparisons with the KSCC and some related recognition methods. The results demonstrate the effectiveness of the proposed method.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
